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German Democratic Republic 
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Abstract. The maximal storage capacity for hierarchically correlated patterns is calculated 
without using an explicit learning rule. If the lowest-level branching ratio tends to infinity 
strong correlations increase the storage capacity, otherwise they decrease i t  significantly. 
There is probably no enlargement of the typical basins of attraction due to the hierarchical 
organisation. We consider both two-level hierarchies and those with infinitely many levels. 

1. Introduction 

One of the most interesting questions in the rapidly developing field of statistical 
mechanics of attractor neural networks concerns the storage of hierarchically correlated 
patterns. There are at least two reasons why hierarchies of patterns merit special 
consideration. Firstly it is known that the human brain prefers to store hierarchically 
ordered information; we even subconsciously modify inputs to make them fit into an 
already existing hierarchy (Parga and Virasoro 1986, Toulouse et a1 1986). Secondly 
in neural networks of N formal neurons with random synaptic couplings there are 
O(exp( U N ) )  attractors in phase space which are hierarchically ordered with respect 
to their mutual overlap (MCzard et a1 1984, 1987). It is tempting to try to meet this 
spontaneously arising structure of low-energy states by a hierarchical organisation of 
the patterns in order to improve the so far rather modest storage capacity of maximally 
p = a,N patterns, where a ,  = O( 1). 

Several approaches to this problem have been discussed. One possibility is to use 
hierarchically structured networks, where different levels of the network are used to 
store the ancestors of the patterns (Dotsenko 1985, 1986, Gutfreund 1988, Sourlas 
1988, Sutton et a1 1988). Here we will be concerned with homogeneous networks that 
store hierarchically correlated patterns, a situation more similar to the spin-glass 
problem where the above-mentioned hierarchical organisation of attractors occurs. 
Moreover, in this case the ancestor patterns, which are only instrumental in defining 
the statistics of the hierarchy, do not have to be stored. Hitherto the storage abilities 
of such networks have only been studied by using a special learning rule which allows 
us to determine the synaptic couplings appropriate for a given set of patterns (Parga 
and Virasoro 1986, Feigelman and Ioffe 1987, Cortes et a1 1987, Bos et a1 1988, 
Gutfreund 1988, Ioffe et a1 1989). It is therefore not clear whether the results produced 
are characteristic for the statistics of the patterns or for the learning rule implemented. 
Cortes et al, for example, use the pseudoinverse rule and find, after neglecting terms 
of order N-''2 in the overlap matrix, the same storage capacity as for the Hopfield 
model. But the Hebb rule used in the Hopfield model is also equivalent to the 
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pseudoinverse rule for uncorrelated patterns if one neglects O( N-1’2) terms in the 
overlap matrix. It seems likely, therefore, that by retaining these terms the learning 
rule of Cortes et a1 would yield a,  = 1 as in the case of uncorrelated patterns (Kanter 
and Sompolinsky 1987). The learning rules of Parga and Virasoro, Feigelman and 
Ioffe, and Bos et a1 differ only slightly from the rule of Cortes et al. Hence it remains 
unclear whether there are more appropriate learning rules which allow for a more 
effective use of the correlations present in a pattern hierarchy. Actually very recently 
Ioffe et a1 proposed a new learning rule with much higher values of a ,  than in the 
Hopfield model (Ioffe et a1 1988). 

The most transparent way to study the optimal storage abilities for hierarchically 
correlated patterns consists in applying the methods developed by Elizabeth Gardner 
to analyse the phase space of interactions (Gardner 1988). Using these methods it is 
not necessary to implement a learning rule at all so that the results for the storage 
capacity a,  are solely determined by the statistical properties of the pattern hierarchy. 
The actual value of the synaptic couplings that produce a given capacity can then be 
determined by iterative procedures (Gardner 1988). In the present paper we calculate 
in this way the maximal storage capacity a ,  for a regular two-level hierarchy. The 
results should be typical also for hierarchies with more than two but finitely many 
levels. In addition we investigate for the first time pattern hierarchies with a number 
of levels diverging with N +CO. This allows us to store infinitely many patterns although 
the branching ratio at all levels remains finite. 

The paper is organised as follows. Section 2 defines the pattern hierarchy and fixes 
the notation. Section 3 deals with the two-level hierarchy and introduces a renormalisa- 
tion group technique for the determination of a,. These methods are used in section 
4 for the analysis of an infinite hierarchy. Section 5 is devoted to a study of the 
information content of a pattern hierarchy and finally section 6 contains a summary 
and discussion of the results. 

2. Pattern hierarchies 

We consider a network N of formal neurons SI = *1, i = 1, .  . . , N, which are connected 
by synaptic couplings J,,. The dynamics is given by S , ( t +  1) = sgn(X,tl J t j S j ( t ) ) .  A 
special configuration {ti} is called a fixpoint with stability K of the dynamics if for all 
i =  1 , .  . . , N 

1 ti- Ji j t j  2 K .  
NI’* j + ;  

The normalisation 
c J ; = N  

j t i  

for all i makes K = O( 1) for N + CO. We are interested in the maximal number p of 
hierarchically correlated patterns {tf}, p = 1, . . . , p ,  which can be stored with stability 
K in the network if N + CO. 

We first define the statistics of a two-level pattern hierarchy, the generalisation to 
more levels being straightforward. To this end we choose the branching ratios zo and 
z1 for the zeroth and first level respectively and set 

(f = ~ ; l L P ’ ( p  

i = l ,  ..., N /A = 1, * . . , p pI=  [p / r , ]  = 1,. . . ,z1 
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where [x] denotes the largest integer smaller than x and the [ 1 k ) 3 p  are independent, 
identically distributed variables with distribution 

(2.4) 

Equations (2.3) and (2.4) just mean that one first generates z ,  ancestors with mutual 
overlap m i .  Then every ancestor pattern splits into zo descendents with mutual overlap 
mg (figure l ) ,  hence there are p = zozl patterns (57) .  

5;” 5 ‘ 2 ’  5’3) 514’ E \ 5 ’  ~ 1 6 1  , , , I 

Figure 1. Two-level hierarchy with z, = 2 and zo = 3 .  The [ ! k ) 3 ’ ’  are only auxiliary variables 
to define the correlations between the patterns {[r}. 

Note that only these patterns (57) are to be stored, the {i$k’9”) are just the auxiliary 
variables to fix the statistics of the (6:). The overlap matrix 

as follows from (2.3) and (2.4). The strongest correlations are those within a class on 
the lowest level and described by the parameter mo.  Similar definitions of pattern 
hierarchies have been used by other authors (Parga and Virasoro 1986, Rammal et a1 
1986, Feigelman and Ioffe 1987, Cortes et a1 1987, Gutfreund 1988). For our purposes 
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it is important that [\”+ = *l for all k. Finally we mention that patterns with low 
level of activity or ‘magnetisation’ (Amit et a1 1987a, Gardner 1988) defined by 

(2.7) 
l + m  1-m 

P ( g )  = - S( 6: - 1) +2 S( c g f  + 1) 
2 

can be interpreted as a ‘one-level hierarchy’ according to (2.3), (2.4). 

3. Storage capacity for a two-level hierarchy 

The storage capacity can be determined with the help of a projection operator x ( { J u } )  
in the phase space of interactions JIJ of the form (Gardner 1988) 

(3.1) 

,y is equal to one for all points {J , , }  which fulfil (2.1) for all patterns at one given 
neuron i and is zero otherwise. Since all the J,, are independent it is sufficient to 
consider only one neuron. 

The main idea of Gardner’s approach consists in calculating the quantity 

which gives the typical overlap between two different solutions J y ’  and Jf’ of the 
stability problem (2.1) and characterises the similarity between J t ’  and J r ’ .  For small 
values of a we will find q = 0 since very different solutions of { J V }  are possible. With 
increasing a the solutions become more and more correlated and for a + a, we find 
q-, 1 signalling the uniqueness of the solution of (2.1). The integrals in (3.2) are 
restricted to the sphere with radius NI’’ in order to meet the constraint (2.2). The 
average over the patterns in (3.2) must not be done for the numerator and denominator 
separately and can be performed using the replica trick. 

The quantity q arises in a natural way as a saddle-point variable in the calculation 
of the nth power of the partial volume V of points for which x = 1 averaged over the 
statistics of the patterns in the limits N + 00, n + 0, which is therefore the central 
quantity of interest. Using appropriate integral representations of the &functions in 
(3.1) we have the starting expression as Gardner (1988): 

Here (Y is a replica index and runs from 1 to n and the 6-functions ensure the 
normalisation (2.2). The disorder-independent part in (3.3) can be handled exactly as 
in the case of uncorrelated patterns (Gardner 1988). In order to calculate the average 
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over the patterns we use (2.3) and first average over tjo)+ shifting the average over 
t!o)*w to the end of the calculation. To leading order in N we find using (2.4) 

( ~ X P {  -j& w , a  xzt; ' )*@ J;tj'i*w t~o'3w})),..p 

1 
= exp{ -im, 1 ,!oj+x; t ! l ) +  J a t [ l ) - f i  ? r J  

w'.a I 

-- 1-mi  c x:x"~J;Js}. 1 

2 I 4 a . P  

Introducing the abbreviations 

1 A" I.r =- "/2 sl"s" c J;t:" 
I 

and 

(3.4) 

The A;, xz integrals factorise in p and introducing an integral representation of the 
second &function in (3.7) we get 
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Comparing (3.8) with the numerator of (3.3) one realises that the expressions are 
similar in their mathematical structure. Averaging over the lowest-level auxiliary 
variables ,$o)"' leaves us with an expression for the partial volume (( V"')) of a hierarchy 
with only one level and z ,  patterns {S !" *p ' } .  Hence we expect that the &; dependence 
of the last term in (3.8) produces a renormalised lower cut-off K '  for the A; integral. 
These properties, which arise from the self-similar structure of the pattern hierarchy, 
will be useful in particular for studying infinite hierarchies. For the present case of a 
two-level hierarchy they just mean that the average over the ,f;')+' is to be taken 
analogously to that over the (jo)"". 

In this way we get from (3.8): 

(3.10) 

By analogy with (3.5) we introduce 

1 
M" =- N1/2 E J; (3.11) 

(since a two-level hierarchy is characterised by ,$2)qp"= 1). Moreover, we define 
similarly to (3.9) a function 

Including the disorder-independent terms in the same way as Gardner we get finally 
for the numerator of (3.3): 

(3.13) 

where 

F"PJ"JP-fxEa(Ja)2-c KOJ" (3.14) 
(I (I 
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The integrals in (3.13) are performed for N -, 00 by the saddle-point method which 
requires that also the last term in the bracket is O(1). We investigate two different 
possibilities to ensure this. The first is defined by zo = 0 ( 1 )  and z ,  = O ( N )  and will 
be referred to as the universalist case, since the system stores some items in each of 
very many classes. The opposite case of a specialist is given by zo = O( N )  and z ,  = O( 1)  
where few classes containing very many patterns are stored. In this case we find from 
(3.12) G(’) (G,  4) = O ( N )  and the last term in (3.13) is again O(1). Interestingly the 
maximal storage capacity is markedly different in these two cases. 

The saddle point is assumed to be replica symmetric which simplifies the expressions 
significantly. After standard manipulations (Gardner 1988) we get from (3.13), (3.14), 
(3.12) and (3.9) 

G‘”( M, q )  ++ In( 1 - q )  +- - ) + O ( n , N - ’ ) ] ]  (3.15) 
2 1 - q  

with 

G ‘ ” ( M ,  q )  = (((5 Dt, In (5 dA[27r(l- mi)(  1 - q ) ] - ’ l 2  

and 

K - mo,f\”A + ( 1  - 
G“’(A, q )  = ((5 Dt, In H ( 

[ ( I  - m i x 1  - q)11/2 
(3.17) 

As usual we have used the notations 

. . .  and H ( x )  = lxm Dt. 

As discussed at the beginning of this section the critical storage capacity a, = (Z, ,Z,)~/  N 
is given by the self-consistent equation for q corresponding to (3.15) in the limit q -, 1.  
Using the asymptotic expansion 

we get from (3.17) 

where we have retained the most divergent term only and have introduced 

K - mo(jo’A 
( 1  - mi)”2 * 

For the specialist case we find from (3.16) 

K ‘ =  

G“’( M, q )  = Z ~ G ‘ ~ ) ( A ( * ’ ,  q )  

and A(*’ is given by 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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(the limit N +  cc is to be taken before q + 1 ) .  Hence G“’( M, q)  does not depend on 
M and m, in this case. 

For a hierarchy of universalist type we note that the first part of the A integral in 
(3.16) becomes a &function for q + 1. Therefore we get 

with 
K “ =  ( 1  - m;)-”’[K - m o l j o ’ m , ~ \ ” M +  moejO’(l - m:)”*t l ] .  (3.23) 

Inserting (3.20), (3.18) and (3.22) into (3.15) we find the self-consistent equations for 
the order parameters in the limit q + 1 ,  which determine a,. For the specialist case 
these are 

where K ’  is given by (3.19) and A‘” is to be determined from 

For the universalist we get 

where K ”  is given by (3.23) and M‘”’  follows from 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Equations (3.24) and (3.25) are exactly the same as obtained by Gardner for patterns 
with magnetisation mo, therefore we find 

aipec(m0, m , , ~ ) = a ~ ~ ( m , , ~ ) .  (3.28) 

This is a remarkable result and means that if one can store p patterns with magnetisation 
m, one can also store z1 = O( 1 )  classes of p / z ,  patterns, where all patterns within one 
class have again mutual overlap m i ,  irrespective of the overlap between dflerent classes. 
In particular we find similar to Gardner for mo+ 1 

(3.29) 

i.e. strong correlations within the classes facilitate the storage. Recently Ioffe er a1 
introduced a symmetric learning rule which asymptotically realises half of the maximal 
value given by (3.29) and which is therefore probably the best-suited symmetric rule 
(Ioffe et a1 1989). All the other learning rules which were proposed (Parga and Virasoro 
1986, Feigelman and Ioffe 1987, Cortes er a1 1987, Bos er a1 1988, Gutfreund 1988) 
are, with a,  = 0.14, . . . ,0 .2 ,  far from optimal; in particular their values for a, do not 
depend on m,. The result (3.28) has also been reported by Virasoro for the special 
case m, = 0 and K = 0 (Virasoro 1988). Here we see that the equivalence holds true 
for any value of K ,  hence one should not expect enlarged basins of attractions due to 
the hierarchical organisation. 
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In order to determine a, for the universalist case one has to perform the to and t ,  
integrations and the remaining averages in (3.26) and (3.27). This can be done 
analytically and comparing the results with the equations following from (3.24) and 
(3.25) one realises 

(3.30) 

The prefactor in (3.30) characterises the correlations in the hierarchy since mz gives 
the overlap between patterns within one class and mgm: that of patterns of different 
classes. The storage capacity is very different from the specialist case; in particular 
we find for ma+ 1 

a:niv(mo, m l ,  K ) + O  (3.31) 

in marked contrast to (3.29). If one deals with infinitely many classes strong correlations 
within the classes make a perfect storage very difficult. It might be that by allowing 
for a small percentage of errors in the retrieval (Gardner and Derrida 1988) one could 
increase a, significantly as in the Hopfield model (Amit et a1 1987b); however, this 
seems not very likely. Note also that for m a =  1 one must have 

aEniv(1, m,,  ~ ) = z ~ a e ~ ( m , ,  K )  

since one has to store the first level ancestors only. 
Hence a:"iv(mo, m,, K )  is discontinuous at mo= 1; it is the occurrence of almost 

identical patterns which make the storage so difficult. In this context it might be helpful 
to recall that it is impossible (without self-couplings) to store two patterns exactly 
which differ only by one bit. It is remarkable that all these complications do not arise 
in the specialist case. Figure 2 shows a,Yniv(mo, m, , 0) as a function of mo for different 
values of m,; figure 3 illustrates the dependence on ml with m, as a parameter. For 
m , +  1 we get from (3.30) 

a:"iv(mo, m, ,  K ) = a e a ( m o ,  K )  

since we come back to the 'one-level hierarchy' of patterns with magnetisation m,. 

ma 

Figure 2. Storage capacity for a two-level hierarchy of universalist type for K = O  as a 
function of m, for m, =0.95, 0.9, 0.8, 0.5, 0.2 (from top to bottom). 
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,,' / 
>I' / 

lI 

0.5 1 

m. 

Figure 3. Storage capacity for a two-level hierarchy of universalist type for K = O  as a 
function of m, for m, = 0.2 (left top) and m, = 0.9. The dotted curve is a:"( mom,, K = 0). 

Using an explicit learning rule Gutfreund (1988) finds 

a c - ( l - l ~ o l ) 2  mo+ 1 (3.32) 

which is clearly below the actual asymptotics given by (3.30). One should note, 
moreover, that with this learning rule one misses the difference between specialist and 
universalist and for the former (3.32) is very poor. 

Finally we note that (3.30) is again valid for all values of K so that there are again 
probably no improved attraction basins due to the hierarchical organisation of the 
patterns. 

4. Hierarchies with infinitely many levels 

The results for a two-level hierarchy obtained in the preceding section should be 
representative for hierarchies with more but finitely many levels. In particular the 
branching ratio z k  has to diverge for one or more k in order to ensure p = nF=-d z k  = 
O ( N ) .  The statistics of the higher levels will then be again irrelevant for a ,  as in the 
specialist case of a two-level hierarchy. 

The situation is different if one allows for a divergence of the number of levels K 
with N+oo keeping all branching ratios finite. The methods developed in the last 
section, in particular the renormalisation group procedure to determine (( V")), can be 
used to estimate a ,  also for this case. It will turn out that we find again p = O( N )  
and if all branching ratios Z k  are of the same order of magnitude this gives 

K - 1 n N  (4.1) 

for the number of levels in the hierarchy. 
The patterns are defined by 
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with 

by analogy with (2.3) and (2.4). The calculation of (( V")) is a generalisation of the 
procedure used in section 3. The disorder-independent terms present no problems. 
The rest is first averaged over t j o ) + o .  Introducing the abbreviations 

one finds for k = l  an expression similar to (3.8) with AZ,+A!+'P and XE.+x!+'p .  In 
(4.4) we have used the notation 

for the 'rest' of (7 after averaging over the k lowest levels of the hierarchy. At this 
stage we find for the disorder-dependent part of the result (cf (3.8)) 

(4.5) 

with the recursion relation for the G functions: 

similar to (3.12). The second term in the exponent of (4.6) describes the coupling of 
level k to level ( k +  l) ,  the last term to level ( k -  1) .  If all averages are performed we 
introduce 

and find an expression for (( V")) analogous with (3.13) where only the last term is to 
be replaced by ( z k - l / N ) G ( K - l ) ( & f ,  9 ) .  As will become clear immediately we have 
G ( K - l ) ( & f ,  4) = O(l-If=-; zk) and with (4.1) the remaining integrals can be calculated 
for N-oo by the saddle-point method. Assuming replica symmetry similar sim- 
plifications as for the two-level hierarchy are possible and we get 

G ( K - l ) ( M ,  q )  +f In( 1 - q )  +- - ) +O(n, N - I ) ] }  (4.7) 
2 1 - q  
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as a generalisation of (3.15). Moreover the recursion relation (4.6) simplifies to 

Finally we have to take the limit q + 1 in order to obtain a,. Since all z k  are of 
order one the A k  integrals in (4.8) can be done by using that the first part of the 
integrand becomes a 8-function for q + 1. As a result we find 

G(k)(Ak+l, q+l)=Zk-I([  D f k G ( k - 1 i ( * k S j k i h k + 1 - ( 1 - d ) 1 / 2 f k ,  q +  1))) .$k) (4.9) 

which after iteration justifies the use of the saddle-point method. With the help of 
(4.9) we can easily express G‘k”’(M, q + 1) in terms of G‘o’(A1, q + 1) which after 
replacing A by A ’  is given by (3.18). In this way we get from (4.7) the following 
equations for the determination of a,: 

(4.10) 

K~ = (1  - m ; ) - ’ l 2 ( K  - m 0 1  ~ ‘ O ’ { m l ~ l l ’ [  . , . ( m K - I & K - l ) ~ -  (1 -mi - l ) ”2 fK- l ) - .  . e ]  

- (1 - m:)1/2tl}). (4.12) 

These equations generalise (3.26), (3.27), (3.23) of the previous section. The remaining 
averages over Sik) and f k  can again be performed analytically where one starts with 
S!”, to and finds again a renormalisation-group-like behaviour due to the structure of 
K K .  For simplicity we consider the case K = 0 only. Having performed the averages 
from t$’), to to & f ) ,  t f ,  O <  1 < K - 1, we find from (4.10)-(4.12): 

(4.13) 
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- 
where 

(1 - m?+l )”2 t f+ l  (4.15) 

(4.16) 

Hence the mathematical structure of these equations is the same for all I ;  only the 
parameters K~ and f i l  vary according to (4.15) and (4.16). With the additional definition 
m-, = 1, (4.10)-(4.12) also fit into this scheme. 

Comparing the result for 1 = K - 1 with the equation of Gardner (cf (3.24), (3.25)) 
we get the final result 

2 1 - m o  
1 - m  a Y , ( m , , m l  , . . . ,  m K - l , ~ = O ) = - - - i a e a ( m , ~ = ~ )  

with 

K - I  

m = a K - ] =  n mk.  
k = O  

(4.17) 

(4.18) 

Therefore a hierarchy with very many levels has storage properties similar to a 
two-level hierarchy of universalist type (cf (3.30)). Only the largest and the smallest 
correlations in the system, characterised by m, and m respectively, are essential for 
a,. Since one assumes mk < 1 for all k we have m + 0 for K = O(ln N )  + 00 and find 
from (4.17) the remarkably simple result 

a,( m,, m ,  , . . . ; K = 0) = 2( 1 - m i ) .  (4.19) 

5. Information content of a pattern hierarchy 

Already in the discussion of patterns with low level of activity or magnetisation it was 
noted that the storage capacity does not adequately characterise the efficiency of storage 
since the patterns contain less information if their correlation increases (Amit et a1 
1987a, Gardner 1988). In order to compare the storage of hierarchically correlated 
patterns with that of patterns with other statistical properties it is therefore necessary 
to calculate the information content of a pattern hierarchy. Since there are no correla- 
tions between different neurons it is sufficient to consider one neuron; the index i is 
therefore dropped. The information I of a sequence {tr} ,  p = 1, . . . , p ,  is given by 

(5.1) L e q =  -$) P ( { t P ’ ) )  In p({cp1) 

where P({,$r})  denotes the probability of the sequence. 
For simplicity we consider again a two-level hierarchy; the generalisation to hierar- 

chies with more levels creates no problems. According to the definitions (2.3) and 
(2.4) the sequence consists of Z, independent words, each containing zo letters which 
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are not independent of each other. All the words contain the same information, hence 
we have 

I s e q = Z I I w o r d = - Z 1  $:) p({&”})  In p ( { 5 ” } )  (5.2) 

where {t”}, p = 1,. . . , z,, now stands for one word. 
From (2.3) we have 

Since all the 5‘”’” are independent, P ( ( 5 ” ) )  only depends on the number k of patterns 
with 5’ = +1, i.e. we can write 

( 5 ’ )  k = O  

and from (5.2), (5.3) and (2.4) we get 

(5.4) 

Using (5.4) we can calculate the whole information content per synapse of a two-level 
pattern hierarchy as: 

For m, = 0 we get Iword = zo In 2 independent of m,  , for m, + *1 only the k = 0 and 
k = zo terms in (5.4) survive yielding Iword = 4( 1 + m , )  In !(I+ m , )  + t (  1 - m , )  In f( 1 - m , ) .  
Moreover we find 

2 2 2 

which with (5 .5)  reproduces the result for patterns with magnetisation mo (Amit et a1 
1987a, Gardner 1988). 

Let us now consider the differences of the information content of a two-level and 
a ‘one-level’ hierarchy. Because of (3.28) we compare a hierarchy of specialist type 
with patterns with magnetisation mo and infer from (5.6) for m, E (-1, 1) 

2 2 2 (5.7) 

and hence a two-level hierarchy contains indeed more information than one with one 
level only. However, taking into account (5.5) we see that because of z o = O ( N )  this 
increase in information is only 0 ( 1 / N )  and therefore negligible for N+m.  For a 
universalist we get from (5.4) and (5 .5)  that the information is maximal for zo= 1 
which is just the case of patterns with magnetisation (mo, m,). This is demonstrated 
in figure 4 where I is plotted as a function of m0 for two values of m, and zo = 1,2,3. 
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'I 

m Q  
Figure 4. Information capacity of a network storing a two-level pattern hierarchy of 
universalist type as a function of m, for m ,  = 0.95 (full curve) and m ,  = 0.2 (broken curve). 
The branching ratio z, takes the values 1, 2, 3 (from top to bottom). 

6. Summary 

In this paper we have investigated the maximal storage capacity a,  = p , N  of an attractor 
neural network storing hierarchically correlated patterns. This has been done using 
the methods developed by Gardner for statistical mechanics in the phase space of 
synaptic interactions and therefore no reference to a special learning rule was necessary. 
Consequently the results for a ,  depend indeed only on the statistical properties of the 
pattern hierarchies under consideration. 

In the case of a two-level hierarchy a distinction according to the order of magnitude 
of the two branching ratios zo and z, was necessary. We have always a ,  = O( 1) but 
the actual value of a ,  depends strongly on whether zo = O( N )  and z ,  = O( l ) ,  which 
was called the specialist case, or zo = O( 1) and z1 = O( N )  which was referred to as the 
universalist case. A specialist stores many items which belong to only a few classes; 
a universalist knows some items out of very many different classes. This distinction 
may easily be missed if one uses special learning rules and only requires (zozl) = O( N )  
(Gutfreund 1988, Bos et a1 1988). 

The specialist case is characterised by the same storage capacity a ,  as determined 
by Gardner for patterns with magnetisation (Gardner 1988) which can be interpreted 
as a 'one-level hierarchy' 

azpec(mO,  m l , ~ ) = a ~ " ( m 0 , K ) .  (6.1) 

In particular one finds aEpec(mO, m , ,  K ) + C O  if mo+ 1, i.e. strong correlations inside 
the classes facilitate the storage. This is very different from the universalist case, where 
one finds 

and hence a,(mo, m l ,  K ) + O  if mo+ 1. Now strong correlations inside the classes 
requires storage of very many classes of almost identical patterns, which is very difficult 
and results in a strong decrease of a,. 
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All values for a,  produced so far with special learning rules are, in part, considerably 
smaller than the results (6.1) and (6.2) (Parga and Virasoro 1986, Feigelman and Ioffe 
1987, Cortes et a1 1987, Bos et a1 1988, Gutfreund 1988). The best result was reported 
recently by Ioffe et a1 which saturates with a symmetric learning rule asymptotically 
half of the optimal value (6.1) for a hierarchy of specialist type (Ioffe et a1 1989). The 
methods developed in section 3 for the discussion of a two-level hierarchy allows for 
a generalisation to an arbitrary number of levels; in particular also the case where the 
number of levels diverge with the number N of neurons tending to infinity can be 
treated. The result for a,  is similar to the universalist case (cf (4.17)) and depends 
only on the largest and the smallest correlations in the system. Therefore the higher 
levels k b 2 of the hierarchy influence a,  only insofar as they produce the first level 
ancestors of the patterns. For infinitely many levels we get 

a, = 2( 1 - mi) (6.3) 
as for a two-level hierarchy of universalist type with uncorrelated ancestors ( m1 = 0). 

These results show that one cannot improve the storage capacity with the help of 
a regular hierarchical organisation of the patterns as defined in section 2 beyond the 
value for a ‘one-level hierarchy’ of patterns with magnetisation. Since (6.1) and (6.2) 
are valid for all values of K there is probably also no enlargement of the typical basins 
of attraction of the patterns. Due to the correlations between pattems forming a 
hierarchy the storage capacity a,  gives only a rough estimate of the amount of 
information stored. Calculating the information content of a two-level hierarchy one 
finds that a hierarchy of specialist type contains more information than the correspond- 
ing set of patterns with magnetisation; however, the increase is only of order 1/ N. A 
universalist hierarchy contains less information than patterns with magnetisation moml 
because of the additional correlations inside the lowest classes. The same argument 
holds for hierarchies with infinitely many levels. 

In conclusion, pattern hierarchies of the type mostly discussed so far do not fulfil 
the hopes which were linked with a hierarchical organisation of the information to be 
stored. Generalisations may include irregular hierarchies or those where all pattems 
of one class coincide for a fixed set of neurons, which is a stronger constraint than 
the requirement of equal mutual overlap used in our definition. Another possibility 
is opened by learning procedures in randomly prestructured networks which possess 
from the start exponentially many hierarchically organised attractors (Toulouse et a1 
1986). 
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